Geometric Interpolation by Planar Cubic G1 Splines
نویسندگان
چکیده
In this paper, geometric interpolation by G cubic spline is studied. A wide class of sufficient conditions that admit a G cubic spline interpolant is determined. In particular, convex data as well as data with inflection points are included. The existence requirements are based upon geometric properties of data entirely, and can be easily verified in advance. The algorithm that carries out the verification is added. AMS subject classification (2000): 65D05, 65D07, 65D17.
منابع مشابه
Geometric Hermite interpolation by cubic G1 splines
In this paper, geometric Hermite interpolation by planar cubic G1 splines is studied. Three data points and three tangent directions are interpolated per each polynomial segment. Sufficient conditions for the existence of such G1 spline are determined that cover most of the cases encountered in practical applications. The existence requirements are based only upon geometric properties of data a...
متن کاملAlgorithm for Geometric
We show that the geometric Hermite interpolant can be easily calculated without solving a system of nonlinear equations. In addition we give geometric conditions for the existence and uniqueness of a solution to the interpolation problem. Finally we compare geometric Hermite interpolation with standard cubic Hermite interpolation. x1 Introduction Since parametric representations of curves are n...
متن کاملAn Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملOn the variety of planar spirals and their applications in computer aided design
In this paper we discuss the variety of planar spiral segments and their applications in objects in both the real and artificial world. The discussed curves with monotonic curvature function are well-known in geometric modelling and computer aided geometric design as fair curves, and they are very significant in aesthetic shape modelling. Fair curve segments are used for two-point G1 and G2 Her...
متن کاملPlanar cubic G interpolatory splines with small strain energy
In this paper, a classical problem of the construction of a cubic G1 continuous interpolatory spline curve is considered. The only data prescribed are interpolation points, while tangent directions are unknown. They are constructed automatically in such a way that a particular minimization of the strain energy of the spline curve is applied. The resulting spline curve is constructed locally and...
متن کامل